

17CV/CT32

Third Semester B.E. Degree Examination, July/August 2021 Strength of Materials

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Draw stress strain diagram for mild steel and explain in brief.
b. Define Poisson's Ratio and Modulus of Rigidity.
c. A bar of uniform cross-section 20 mm diameter is subjected to a load as shown in Fig.Q.1(c). Find the total elongation of the bar and maximum stress in the bar. Given $\mathrm{E}=200 \mathrm{GPa}$.
(10 Marks)

Fig.Q.1(c)

2 a. Derive an expression for the total extension of the tapered bar of circular cross section when it is subjected to an axial tensile load ' P '.
(06 Marks)
b. Derive the relation between Young's modulus (E) and modulus of rigidity (G) in the form $\mathrm{E}=\frac{9 \mathrm{KG}}{3 \mathrm{~K}+\mathrm{G}}$.
(06 Marks)
c. A compound bar is made of central steel plate 50 mm wide and 10 mm thick to which copper plate of 50 mm wide and 5 mm thick are connected rigidly on each sides as shown in Fig.Q.2(c). The length of compound bar is 1000 mm at room temperature. If the temperature is raised by $100^{\circ} \mathrm{C}$ determine stresses in each material and change in length of compound bar. Assume $\mathrm{E}=200 \mathrm{GPa}, \mathrm{E}_{\mathrm{C}}=100 \mathrm{GPa}, \alpha_{S}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and $\alpha_{\mathrm{C}}=18 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.
(08 Marks)

Fig.Q.2(c)

3 a. For thin cylinder subjected to internal pressure ' P ' prove that the circumferential stress equal to $\mathrm{Pd} / 2 \mathrm{t}$ and longitudinal stress equal to $\mathrm{Pd} / 4 \mathrm{t}$ where $\mathrm{d}=$ Internal diameter, $\mathrm{t}=$ wall thickness.
(06 Marks)
b. What are principal stresses and principal planes?
(04 Marks)
c. An element in plane stress is subjected to stresses $P_{1}=120 \mathrm{~N} / \mathrm{mm}^{2}$ and $P_{2}=45 \mathrm{~N} / \mathrm{mm}^{2}$ and shear stress $30 \mathrm{~N} / \mathrm{mm}^{2}$ as shown in Fig.Q.3(c). Determine the normal stress, shear stress, major principal stress, minor principal stress and maximum shear stress acting on an element rotated through an angle $\theta=45^{\circ}$.
(10 Marks)

Fig.Q.3(c)
4 a. Explain the construction of Mohr's circle for compound stresses in two dimensional systems.
(10 Marks)
b. The external and internal radius of a thick cylinder is 300 mm and 200 mm respectively. The maximum stress permitted is $15.5 \mathrm{~N} / \mathrm{mm}^{2}$. The external pressure is $4 \mathrm{~N} / \mathrm{mm}^{2}$. Find the internal pressure. Plot the curves showing the hoop and radial stresses across the thickness. (10 Marks)

5 a. Explain:

i) Sagging Bending moment
ii) Hogging Bending moment
iii) Point of contra flexure.
(06 Marks)
b. For the beam shown in Fig.Q.5(b) draw SFD and BMD, show the salient values on the figure. Locate the point of contra flexure if any.
(14 Marks)

Fig.Q.5(b)
6 a. Derive the relation between load intensity shear force and bending moment.
(06 Marks)
b. Draw the shear force and bending moment diagram indicating principal values for an overhanging beam shown in Fig.Q.6(b).
(14 Marks)

7 a. Explain maximum principal stress theory and maximum shear stress theory.
(10 Marks)
b. Design a shaft to transmit 1 M Watt of power at 300 rpm . The stress in the shaft should not exceed 60 MPa and angle of twist should not be more than 1° in the length of 10 times diameter. Assume C $=80 \mathrm{MPa}$ for the material.
(10 Marks)
8 a. Derive the torque equation $\frac{\mathrm{T}}{\mathrm{J}}=\frac{\mathrm{C} \theta}{\mathrm{L}}=\frac{\mathrm{q}}{\mathrm{R}}$.
b. State the assumptions made in the theory of pure torsion.
c. Explain maximum principal strain theory.
(10 Marks)
(05 Marks)

9 a. Derive expression for buckling load on column with both ends hinged.
b. Define the terms:
i) Neutral axis
ii) Section modulus
iii) Modulus of rupture.
(06 Marks)
c. A T-section shown below in Fig.Q.9(c) is used as simply supported beam over a span of 4 m . It carries a udl of $8 \mathrm{kN} / \mathrm{m}$ over its entire span. Calculate maximum tensile and compressive stresses in the beam.
(08 Marks)

10 a. A 1.5 m long column has a circular cross-section of 5 cm diameter. One end of the column is fixed in direction and position and the other end is free. Take factor of safety as 3. Calculate safe load using.
i) Rankines formula, taking yield stress $560 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{a}=\frac{1}{1600}$.
ii) Eulers formula taking $\mathrm{E}=1.2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(08 Marks)
b. A beam with an I-section consists of $180 \mathrm{~mm} \times 15 \mathrm{~mm}$ flange and web of 280 mm depth and 15 mm thick. It is subjected to a moment of $80 \mathrm{kN}-\mathrm{m}$ and shear force of 60 kN . Sketch the bending and shear stresses distribution along the depth of the section.
(12 Marks)

